Science Enabled by Specimen Data

Mokotjomela, T. M., L. R. Vukeya, T. J. Mbele, K. Matsokane, T. Munyai, B. R. Ntloko, and M. P. Monyatsi. 2024. The alien and invasive plant species that may be a future conservation threat to the Lesotho Afro-alpine Drakensberg area. Regional Environmental Change 24. https://doi.org/10.1007/s10113-024-02326-0

In this study, we documented and compared similarities of the alien plant species richness between South Africa represented by three provinces: Free State (FS), Eastern Cape (EC), and KwaZulu-Natal (KZN), and Lesotho—an important water source area for southern Africa. We tested the prediction that alien plant species in Lesotho are a subset of South Africa’s species partly because of the short geographical distances between the provinces and Lesotho, and environmental similarity. Overall, 7124 records containing 1040 individual alien plant species belonging to 147 families were documented. South Africa had significantly greater alien plant species records than Lesotho. Of 147 plant families, 44 were represented in both countries, and 101 families did not occur in Lesotho. Against the study prediction, the Geraniaceae and Orobanchaceae families occurred in Lesotho but not in three provinces. KwaZulu-Natal had a significantly greater number of species than Lesotho but not the other provinces, and 49% of species in three provinces originated from the Americas (i.e. South and North), Europe, and Asia. A similar pattern was observed in Lesotho. Woody and herbaceous alien plants, habitat transformers, dominated three provinces, while herbaceous species dominated Lesotho. The 62% of 1040 alien species were not listed in the South African national regulations, indicating their negative impacts are also unknown in the study region. Plant nurseries were a dominant species dispersal pathway in South Africa, while home gardens were prominent in Lesotho. We conclude that invasive plant species constitute a future threat to the Lesotho Drakensberg highlands water catchments and recommend prioritising their management and improving cross-border biosecurity between Lesotho and South Africa.

Howard, C. C., P. Kamau, H. Väre, L. Hannula, A. Juslén, J. Rikkinen, and E. B. Sessa. 2024. Historical Biogeography of Sub‐Saharan African Spleenworts. Journal of Biogeography. https://doi.org/10.1111/jbi.15019

ABSTRACTAimFerns are globally distributed, yet the number of studies examining the historical evolution of African taxa is relatively low. Investigation of the evolution of African fern diversity is critical in order to understand patterns and processes that have global relevance (e.g., the pantropical diversity disparity [PDD] pattern). This study aims to examine when and from where a globally distributed fern lineage arrived in sub‐Saharan Africa, to obtain a better understanding of potential processes contributing to patterns of diversity across the region.LocationGlobal, sub‐Saharan Africa.TaxonAsplenium (Aspleniaceae).MethodsWe analysed five loci from 537 Asplenium taxa using a maximum likelihood (IQ‐Tree) phylogenetic framework. For age estimation, we performed penalised likelihood as implemented in treePL, and executed a Bayesian analysis using BEAST. Biogeographical analyses were carried out using BioGeoBEARS.ResultsMost dispersals into Africa occurred within the last ~55 myr, with the highest diversity of sub‐Saharan African taxa concentrated in two clades, each of which descended from an Asian ancestor. Additional dispersals to sub‐Saharan Africa can be found throughout the phylogeny. Lastly, potential cryptic species diversity exists within Asplenium as evidenced by several polyphyletic taxa.Main ConclusionsWe recover multiple dispersals of Asplenium to sub‐Saharan Africa, with two major lineages likely diversifying after arrival.

Hodgson, R. J., C. Liddicoat, C. Cando-Dumancela, N. W. Fickling, S. D. Peddle, S. Ramesh, and M. F. Breed. 2024. Increasing aridity strengthens the core bacterial rhizosphere associations in the pan-palaeotropical C4 grass, Themeda triandra. Applied Soil Ecology 201: 105514. https://doi.org/10.1016/j.apsoil.2024.105514

Understanding belowground plant-microbial interactions is fundamental to predicting how plant species respond to climate change, particularly in global drylands. However, these interactions are poorly understood, especially for keystone grass species like the pan-palaeotropical Themeda triandra. Here, we used 16S rRNA amplicon sequencing to characterise microbiota in rhizospheres and bulk soils associated with T. triandra. We applied this method to eight native sites across a 3-fold aridity gradient (aridity index range = 0.318 to 0.903 = 87 % global aridity distribution) in southern Australia. By examining the relative contributions of climatic, edaphic, ecological, and host specific phenotypic traits, we identified the ecological drivers of core T. triandra-associated microbiota. We show that aridity had the strongest effect on shaping these core microbiotas, and report that a greater proportion of bacterial taxa that were from the core rhizosphere microbiomes were also differentially abundant in more arid T. triandra regions. These results suggest that T. triandra naturally growing in soils under more arid conditions have greater reliance on rhizosphere core taxa than plants growing under wetter conditions. Our study underscores the likely importance of targeted recruitment of bacteria into the rhizosphere by grassland keystone species, such as T. triandra, when growing in arid conditions. This bacterial soil recruitment is expected to become even more important under climate change.

Marks, R. A., L. Van Der Pas, J. Schuster, I. S. Gilman, and R. VanBuren. 2024. Convergent evolution of desiccation tolerance in grasses. Nature Plants 10: 1112–1125. https://doi.org/10.1038/s41477-024-01729-5

Desiccation tolerance has evolved repeatedly in plants as an adaptation to survive extreme environments. Plants use similar biophysical and cellular mechanisms to survive life without water, but convergence at the molecular, gene and regulatory levels remains to be tested. Here we explore the evolutionary mechanisms underlying the recurrent evolution of desiccation tolerance across grasses. We observed substantial convergence in gene duplication and expression patterns associated with desiccation. Syntenic genes of shared origin are activated across species, indicative of parallel evolution. In other cases, similar metabolic pathways are induced but using different gene sets, pointing towards phenotypic convergence. Species-specific mechanisms supplement these shared core mechanisms, underlining the complexity and diversity of evolutionary adaptations to drought. Our findings provide insight into the evolutionary processes driving desiccation tolerance and highlight the roles of parallel and convergent evolution in response to environmental challenges. Marks et al. explore the repeated evolution of desiccation tolerance in grasses. Their analysis of diverse resurrection grasses reveals significant genetic convergence and parallel evolution, suggesting a shared foundation for adapting to extreme drought.

Wan, Q., S. Du, Y. Chen, F. Li, R. Salah, M. N. Njenga, J. Li, and S. Wang. 2024. Ecological Niche Differentiation and Response to Climate Change of the African Endemic Family Myrothamnaceae. Plants 13: 1544. https://doi.org/10.3390/plants13111544

Studying the ecological niches of species and their responses to climate change can provide better conservation strategies for these species. Myrothamnaceae is endemic to Africa, comprising only two species that belong to Myrothamnus (M. flabellifolius and M. moschatus). These closely related species exhibit allopatric distributions, positioning them as ideal materials for studying the species ecological adaptation. This study explores the ecological niche differentiation between M. flabellifolius and M. moschatus and their response capabilities to future climate change. The results indicate that M. flabellifolius and M. moschatus have undergone niche differentiation. The main drivers of niche differences are the minimum temperature of the coldest month (Bio6) for M. flabellifolius, precipitation of the driest month (Bio14), and precipitation of the coldest quarter (Bio19) for M. moschatus. M. flabellifolius demonstrated a stronger adaptation to environments characterized by lower precipitation, relatively lower temperatures, and greater annual temperature variations compared to M. moschatus. Under future climate scenarios (SSP5-8.5, 2081–2100 years), the results show that approximately 85% of the total suitable habitat for M. flabellifolius will be lost, with an 85% reduction in high-suitability areas and almost complete loss of the original mid-low suitability areas. Concurrently, about 29% of the total suitable habitat for M. moschatus will be lost, with a 34% reduction in high suitability areas and roughly 60% of the original mid-low suitability areas becoming unsuitable. This suggests that M. flabellifolius will face greater threats under future climate change. This study contributes novel insight into niche differentiation in Myrothamnaceae and provides useful information for the conservation of this distinctive African lineage.

Marks, R. A., P. Delgado, G. M. Makonya, K. Cooper, R. VanBuren, and J. M. Farrant. 2024. Higher order polyploids exhibit enhanced desiccation tolerance in the grass Microchloa caffra. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erae126

Desiccation tolerance evolved recurrently across diverse plant lineages to enable survival in water limited conditions. Many resurrection plants are polyploid and several groups have hypothesized that polyploidy contributed to the evolution of desiccation tolerance. However, due to the vast phylogenetic distance between resurrection plant lineages, the rarity of desiccation tolerance, and the prevalence of polyploidy in plants, this hypothesis has been difficult to test. Here, we surveyed natural variation in morphological, reproductive, and desiccation tolerance traits across several cytotypes of a single species to test for links between polyploidy and increased resilience. We sampled multiple natural populations of the resurrection grass Microchloa caffra across an environmental gradient ranging from mesic to xeric in South Africa. We describe two distinct ecotypes of M. caffra that occupy different extremes of the environmental gradient and exhibit consistent differences in ploidy, morphological, reproductive, and desiccation tolerance traits in both field and common growth conditions. Interestingly, plants with more polyploid genomes exhibited consistently higher recovery from desiccation, were less reproductive, and larger than plants with smaller genomes and lower ploidy. These data suggest that selective pressures in increasingly xeric sites may play a role in maintaining and increasing desiccation tolerance that are mediated by changes in ploidy.

Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4

Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.

Mathur, M., and P. Mathur. 2024. Habitat suitability of Opuntia ficus-indica (L.) MILL. (CACTACEAE): a comparative temporal evaluation using diverse bio-climatic earth system models and ensemble machine learning approach. Environmental Monitoring and Assessment 196. https://doi.org/10.1007/s10661-024-12406-7

A comprehensive evaluation of the habitat suitability across the India was conducted for the introduced species Opuntia ficus-indica . This assessment utilized a newly developed model called BioClimInd, takes into account five Earth System Models (ESMs). These ESMs consider two different emission scenarios known as Representative Concentration Pathways (RCP), specifically RCP 4.5 and RCP 8.5. Additionally, the assessment considered two future time frames: 2040–2079 (60) and 2060–2099 (80). Current study provided the threshold limit of different climatic variables in annual, quarter and monthly time slots like temperature annual range (26–30 °C), mean temperature of the driest quarter (25–28 °C); mean temperature of the coldest month (22–25 °C); minimum temperature of coldest month (13–17 °C); precipitation of the wettest month (250–500 mm); potential evapotranspiration Thronthwaite (1740–1800 mm). Predictive climatic habitat suitability posits that the introduction of this exotic species is deemed unsuitable in the Northern as well as the entirety of the cooler eastern areas of the country. The states of Rajasthan and Gujarat exhibit the highest degree of habitat suitability for this particular species. Niche hypervolumes and climatic variables affecting fundamental and realized niches were also assessed. This study proposes using multi-climatic exploration to evaluate habitats for introduced species to reduce modeling uncertainties.

Karimi, N., and M. M. Hanes. 2024. Patterns of Grewia (Malvaceae) diversity across geographic scales in Africa and Madagascar. Annals of Botany. https://doi.org/10.1093/aob/mcae009

Background and aims Quantifying spatial species richness is useful to describe biodiversity patterns across broad geographic areas, especially in large, poorly known plant groups. We explore patterns and predictors of species richness across Africa in one such group; the paleotropical genus Grewia L. (Malvaceae). Methods Grewia species richness was quantified by extracting herbarium records from GBIF and Tropicos and creating geographic grids at varying spatial scales. We assessed predictors of species richness using spatial regression models with 30 environmental variables. We explored species co-occurrence in Madagascar at finer resolutions using Schoener's index, and compared species’ range sizes and IUCN status among ecoregions. Lastly, we derived a trait matrix for a subset of species found in Madagascar to characterize morphological diversity across space. Key Results Grewia species occur in 50 countries in Africa, with the highest number of species in Madagascar (93, with 80 species endemic). Species richness is highest in Madagascar, with up to 23 Grewia species in a grid cell, followed by coastal Tanzania/Kenya (up to 13 species), and northern South Africa and central Angola (11 species each). Across Africa, higher species richness was predicted by variables related to aridity. In Madagascar, a greater range in environmental variables best predicted species richness, consistent with geographic grid cells of highest species richness occurring near biome/ecoregion transitions. In Madagascar we also observe increasing dissimilarity in species composition with increasing geographic distance. Conclusions The spatial patterns and underlying environmental predictors that we uncover in Grewia represent an important step in our understanding of plant distribution and diversity patterns across Africa. Madagascar boasts nearly twice the Grewia species richness, compared to the second most species-rich country in Africa, which might be explained by complex topography and environmental conditions across small spatial scales.

Putra, A. R., K. A. Hodgins, and A. Fournier‐Level. 2023. Assessing the invasive potential of different source populations of ragweed (Ambrosia artemisiifolia L.) through genomically informed species distribution modelling. Evolutionary Applications. https://doi.org/10.1111/eva.13632

The genetic composition of founding populations is likely to play a key role in determining invasion success. Individual genotypes may differ in habitat preference and environmental tolerance, so their ability to colonize novel environments can be highly variable. Despite the importance of genetic variation on invasion success, its influence on the potential distribution of invaders is rarely investigated. Here, we integrate population genomics and ecological niche models (ENMs) into a single framework to predict the distribution of globally invasive common ragweed (Ambrosia artemisiifolia) in Australia. We identified three genetic clusters for ragweed and used these to construct cluster‐specific ENMs and characterize within‐species niche differentiation. The potential range of ragweed in Australia depended on the genetic composition and continent of origin of the introduced population. Invaders originating from warmer, wetter climates had a broader potential distribution than those from cooler, drier ones. By quantifying this change, we identified source populations most likely to expand the ragweed distribution. As prevention remains the most effective method of invasive species management, our work provides a valuable way of ranking the threat posed by different populations to better inform management decisions.